INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2005-06 Statistics - II, Midterm Examination, March 3, 2006 (10) 1. Let X_1, \ldots, X_n be a random sample from the following distribution: | x | -1 | 0 | 1 | |-------------------|------------|------------|-----------------------| | $P_{\theta}(X=x)$ | θ_1 | θ_2 | $1-\theta_1-\theta_2$ | where $\theta_i > 0$, i = 1, 2 and $\theta_1 + \theta_2 < 1$. - (a) Find minimal sufficient statistics for (θ_1, θ_2) . Is it complete? - (b) Find the maximum likelihood estimate of θ_2 . - (8) 2. Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are independent random samples, respectively, from $N(\mu, \sigma^2)$ and $N(2\mu, 2\sigma^2)$, where $-\infty < \mu < \infty, \sigma^2 > 0$. Find minimal sufficient statistics for (μ, σ^2) . Is it complete? - (8) 3. Suppose X_1 and X_2 are two i.i.d. observations from Binomial(n, p), 0 , <math>n known. Let $\theta = p^n$. Find the UMVUE of θ . - (12) 4. For observations y_1, \ldots, y_n , consider the linear model $$y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n,$$ where x_i is the value of a co-variate corresponding to y_i and ϵ_i are i.i.d. errors having the $N(0, \sigma^2)$ distribution with β , σ^2 unknown. - (a) Show that the distribution of y_1, \ldots, y_n belongs to k-variate exponential family. Find k. - (b) Find minimal sufficient statistic for (β, σ^2) . Is it complete? - (c) Find the least squares estimate of β . - (d) Find the MLE of (β, σ^2) . - (12) 5. Let X_1, \ldots, X_n be a random sample from Poisson $(\lambda), \lambda > 0$. - (a) Find the Fisher information of λ contained in the random sample. - (b) Find the Cramer-Rao lower bound on the variance of an unbiased estimator of $\exp(-\lambda)$. - (c) Find the UMVUE of $\exp(-\lambda)$. Does it attain the lower bound given in (b) above?